An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons.

نویسندگان

  • Ji-Ann Lee
  • Zhen-Zhi Tang
  • Douglas L Black
چکیده

Neuronal depolarization and CaM kinase IV signaling alter the splicing of multiple exons in transcripts for ion channels, neurotransmitter receptors, and other synaptic proteins. These splicing changes are mediated in part by special CaM kinase-responsive RNA elements, within or adjacent to exons that are repressed in the initial phase of chronic depolarization. The splicing of many neuronal transcripts is also regulated by members of the Fox (Feminizing gene on X) protein family, and these Fox targets are also often proteins affecting synaptic activity. We show that Fox-1/Ataxin 2-Binding Protein 1 (A2BP1), a protein implicated in a variety of neurological diseases, can counteract the effects of chronic depolarization on splicing. We find that exon 19 of Fox-1 is itself repressed by depolarization. Fox-1 transcripts missing exon 19 encode a nuclear isoform of Fox-1 that progressively replaces the cytoplasmic Fox-1 isoform as cells are maintained depolarizing media. The resulting increase in nuclear Fox-1 leads to the reactivation of many Fox-1 target exons, including exon 5 of the NMDA receptor 1, that were initially repressed by the high-KCl medium. These results reveal a novel mechanism for the slow modulation of splicing as cells adapt to chronic stimuli: The subcellular localization of a splicing regulator is controlled through its own alternative splicing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fox-3 and PSF interact to activate neural cell-specific alternative splicing

Fox-1 family (Fox) proteins, which consist of Fox-1 (A2BP1), Fox-2 (Rbm9) and Fox-3 (NeuN) in mammals, bind to the RNA element UGCAUG and regulate alternative pre-mRNA splicing. However the mechanisms for Fox-regulated splicing are largely unknown. We analyzed the expression pattern of the three Fox proteins as well as neural cell-specific alternative splicing of a cassette exon N30 of nonmuscl...

متن کامل

Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities

An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related genes, ataxin-2 binding protein 1 (A2BP1...

متن کامل

Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress

Regulation of corticotropin-releasing hormone (CRH) activity is critical for the animal's adaptation to stressful challenges, and its dysregulation is associated with psychiatric disorders in humans. However, the molecular mechanism underlying this transcriptional response to stress is not well understood. Using various stress paradigms in mouse and zebrafish, we show that the hypothalamic tran...

متن کامل

Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1c gene

Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing represso...

متن کامل

RBFOX 1 Regulates Both Splicing and Transcriptional Networks in Human Neuronal Development Brent

RNA splicing plays a critical role in the programming of neuronal differentiation and, consequently, normal human neurodevelopment, and its disruption may underlie neurodevelopmental and neuropsychiatric disorders. The RNA-binding protein, fox-1 homolog (RBFOX1; also termed A2BP1 or FOX1) is a neuron-specific splicing factor predicted to regulate neuronal splicing networks clinically implicated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 23 19  شماره 

صفحات  -

تاریخ انتشار 2009